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ABSTRACT 

Tropical cyclone (TC) forecast verification techniques have traditionally focused on track and 

intensity, as these are some of the most important characteristics of TCs and are often the 

principle verification concerns of operational forecast centers. However, there is a growing need 

to verify other aspects of TCs as process-based validation techniques may be increasingly 

necessary for further track and intensity forecast improvements as well as improving 

communication of the broad impacts of TCs including inland flooding from precipitation. Here 

we present a set of TC-focused verification methods available via the Model Evaluation Tools 

(MET) ranging from traditional approaches, to the application of storm-centric coordinates and 

the use of feature-based verification of spatially-defined TC objects. 

Storm-relative verification using observed and forecast tracks can be useful for identifying model 

biases in precipitation accumulation in relation to the storm center. Using a storm-centric 

cylindrical coordinate system based on the radius of maximum wind adds additional storm-

relative capabilities to regrid precipitation fields onto cylindrical or polar coordinates. This 

powerful process-based model diagnostic and verification technique provides a framework for 

improved understanding of feedbacks between forecast tracks, intensity, and precipitation 

distributions. Finally, object-based verification including land masking capabilities provides 

even more nuanced verification options. Precipitation objects of interest, either the central core 

of TCs or extended areas of rainfall after landfall, can be identified, matched to observations, and 

quickly aggregated to build meaningful spatial and summary verification statistics.   

1. Introduction

Tropical cyclone (TC) forecast verification techniques have traditionally focused on track and 

intensity, as these are some of the most important characteristics of TCs and are often the 

principle verification concerns of operational forecast centers (Goerss 2000; Franklin et al. 2003; 

Sampson et al. 2008; Gall et al. 2013; NHC 2022). Additionally, TC genesis has also become 

integrated into the efforts of operational forecast centers (DeMaria et al. 2001; Halperin et al. 

2013). As a result, many publications and verification tools have been developed for track, 

intensity, and genesis forecasts (Hemming 2017; Halperin et al. 2017; Brown et al. 2021; NHC 

2022). Until recently, precipitation forecasts may not have been emphasized due to significant 
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track errors, poor representation of storm structure due to model resolution, and lack of 

availability of precipitation estimates, particularly over the ocean. However, there is a growing 

need to evaluate other aspects of TC predictions, with the understanding that additional 

verification metrics and process-based validation techniques may be increasingly necessary to 

enable continued improvements in track and intensity forecast skill (Kim et al. 2018; Cheung et 

al. 2018; Haiden et al. 2019), and improve communication of the broad impacts of TCs, 

including those associated with inland flooding from precipitation (Rappaport 2014; Morrow and 

Lazo 2015; Meléndez‐ Landaverde et al. 2020). Specifically, verification of TC precipitation can 

both inform improvements in process representation within models to improve storm evolution 

and help improve forecasts of the significant risks associated with extreme rainfall and flooding 

from landfalling TCs (Marchok et al. 2007; Cheung et al. 2018). Moreover, understanding the 

model-based quantitative precipitation forecasts (QPF) over the ocean is important, for example, 

because any forecast biases may impact the predicted storm characteristics and associated 

flooding potential at the time of landfall.  

Over the past 20 years or more, several science advances have occurred that enable objective, 

large-sample verification of TC precipitation. First is the development of high-quality observed 

precipitation datasets with fine spatiotemporal resolution over both land and ocean. The current 

generation of US Weather Surveillance Radars (WSR-88Ds) was deployed throughout the 1990s 

with subsequent development of radar mosaics and gridded quantitative precipitation estimates 

(QPE) across the continental US. The Stage IV national rainfall QPE product began regular 

distribution in late 2001 (Lin and Mitchell 2005). At the same time, spaceborne QPE saw 

significant enhancements resulting from the Tropical Rainfall Measurement Mission (TRMM) 

satellite launched in 1997 and its associated QPE products becoming available in subsequent 

years (Haddad et al. 1997; Huffman 2006). New methods to better combine geostationary 

infrared and passive microwave precipitation estimates were also developed around the same 

time (e.g. Joyce et al. 2004). More recently, the National Aeronautics and Space Administration 

(NASA) Global Precipitation Measurement (GPM) mission has enabled development of the 

Integrated Multi-satellitE Retrievals for GPM (IMERG), which is an improved satellite 

precipitation product combining active, passive microwave, and geostationary satellite data (e.g. 

Huffman et al. 2020, Qi et al. 2021). Another important factor is the ever-increasing resolution 
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and skill of global and regional numerical weather prediction (NWP) models. Global NWP is 

now performed on ~10 km horizontal grids (Yang et al. 2020; ECMWF 2022) while regional 

NWP forecasts are often convective permitting with resolutions as small as 1-2 km (Clark et al. 

2016; Biswas et al. 2018), with corresponding high spatio-temporal resolution QPF having been 

available for many years.  

A limited number of studies have been undertaken to examine TC-focused QPF performance. 

Marchok et al. (2007) developed a method to verify TC QPF that focuses on large-scale patterns, 

mean and median precipitation, and extreme (95th percentile) precipitation, while also 

accounting for model-produced track errors to develop storm-relative verification statistics. 

Marchok et al. (2007) applied their technique to a relatively large sample of Contiguous United 

States (CONUS) landfalling TCs. A few other studies have examined landfalling TC 

precipitation patterns and QPF verification in the context of flooding, including Villarini et al. 

(2011) which examines QPE only, but does include storm relative quadrant analysis. Luitel et al. 

(2018) examine the large-scale QPF skill of CONUS landfalling TCs and attempt to incorporate 

observational uncertainty through the use of multiple QPE products. While these studies are 

disparate in their metrics and methods, one common theme is the lack of advanced spatial 

verification, such as an integrated leveraging of storm-relative analysis and object-oriented 

verification tools.  

Two recent studies by Chen et al. (2018) and Yu et al. (2020) use object-oriented verification 

techniques and storm-relative coordinate systems in a coherent framework for a large sample of 

storms. They use the contiguous rain area methodology (CRA; Ebert and McBride 2000; Ebert 

and Gallus 2009) to examine location, intensity, and spatial pattern errors in TC QPF. The CRA 

methodology was one of the first object-oriented rainfall verification methodologies. This 

methodology uses a best-fit algorithm to shift the forecast region to find the best location match 

between the forecast and observed precipitation areas. Then the original forecast errors can be 

decomposed into displacement, pattern, rotation, and volume errors, and aggregated to produce 

mean error statistics. Given limited TC QPF evaluations, and in particular object-based studies, it 

is worthwhile for the community to explore additional object-based methods along with tools to 

perform a range of TC QPF evaluations within one software package. 

Accepted for publication in Weather and Forecasting. DOI 10.1175/WAF-D-23-0001.1.Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:25 PM UTC



5 

Here we present a set of TC-centric precipitation verification capabilities all of which are 

implemented in the Model Evaluation Tools (MET; Brown et al. 2021) using verification 

methods ranging from traditional QPF approaches, to storm-centric coordinates, to feature 

verification using objects identified with the Method for Object-based Diagnostic Evaluation 

(MODE; Davis et al. 2006). MODE has been used in previous feature-based verification studies 

(Gilleland et al. 2009; Clark et al. 2014; Wolff et al. 2014), which provide a baseline level of 

understanding of its benefits and limitations. MODE is distinctly different from the CRA 

method, yet complementary. The MODE object identification algorithm was developed to mimic 

the subjective human forecaster’s ability to match observed and forecasted objects and uses a 

multistep process and a fuzzy logic engine to match and merge objects in the forecast and 

observation fields (Halley Gotway et al. 2021). MODE considers a wide range of object 

attributes not considered in the CRA method, and allows for evaluation of both matched and 

unmatched objects (Davis et al. 2006). 

Three different storms were selected for demonstration that exhibit a range of typical North 

Atlantic basin TCs including landfalling and recurving TCs and both weak and strong TCs. We 

anonymized the storms avoid focusing on specific storm performance rather than the utility of 

the methods. The datasets used to demonstrate our TC QPF verification methods are described in 

Section 2, and the verification methods and tools are described in Section 3. Section 4 steps 

through example QPF evaluations, and finally we provide some summary thoughts and 

discussions in Section 5.  

2. Data

a. Tropical cyclone track data

The Automated Tropical Cyclone Forecast (ATCF) file format was developed at the Naval 

Oceanographic and Atmospheric Research Laboratory (NRL) (Miller et al. 1990) and is used by 

the NHC. This file adheres to an ASCII format that includes common fields that describe TC 

information such as basin, cyclone number, position, and intensity. ATCF files are generally 

produced by running a vortex tracking software over the gridded model data to isolate the track 
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location and other relevant storm fields. ATCF file format is also followed for the NHC best 

track, which is a subjectively smoothed post storm analysis of TC location, maximum intensity 

and minimum sea-level pressure at 6-hourly intervals, determined retrospectively using all 

available data (Jarvinen et al. 1984; Rappaport et al. 2009, Landsea et al. 2013). We use the NHC 

best track dataset as our track location observation to account for position errors in the model 

fields for these methods.  

b. Quantitative Precipitation Estimates (QPE)

The QPE products used for our demonstration include the NOAA Climate Prediction Center 

(CPC) Morphing technique (CMORPH) QPE product (Joyce et al. 2004) and the National 

Centers for Environmental Prediction (NCEP) Stage IV QPE product (Baldwin and Mitchell 

1997). Due to the radar- and gauge-based nature of Stage IV, CMORPH is used for verification 

over water, while Stage IV is used for verification over land. In particular, Stage IV is a 4 km 

multi sensor (ground radar and rain gauge) based QPE product that is a merged analysis 

produced by the 12 River Forecast Centers (RFCs) individual Stage IV analyses, which includes 

extensive manual quality control. However, even the Stage IV QPE can be characterized by 

biases and random error (uncertainty) due to a myriad of factors such as radar beam blockage or 

miscalibration, incorrect radar Z-R relationship, rain gauge errors, or a lack of nearby radar or 

rain gauge observations leading to lengthy interpolation distances. However, Stage IV QPE is 

still one of the better QPE estimates over CONUS and is often considered the reference dataset 

(e.g., Beck et al. 2019). Stage IV is available in both hourly and 6 hourly accumulations, and we 

use the 6 hourly accumulations. 

The CMORPH QPE is a satellite based QPE product that blends low Earth orbiting passive 

microwave precipitation estimates and geostationary infrared (IR) cloud top information. The 

passive microwave precipitation estimates are morphed in time using high spatiotemporal 

resolution IR information (Joyce et al. 2004). CMORPH data are available at a variety of spatial 

and temporal resolutions; here we focus on the 3-hourly 0.25 degree data, which are available for 

all our demonstration storms; in addition, the resolution of these data is closer to the native 

resolution of the passive microwave QPE of 10-20 km (Joyce et al. 2004). While CMORPH uses 

relatively high accuracy (over water) passive microwave precipitation retrievals, there are known 
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biases and relatively high uncertainties (relative to in situ or well tuned ground radar QPE) in 

satellite QPE such as CMORPH (AghaKouchak et al. 2011). Additionally, satellite precipitation 

estimates like CMORPH have a conditional bias, where they often severely underestimate higher 

precipitation rates (AghaKouchak et al. 2011; Wright et al. 2017). 

c. Model-based Quantitative Precipitation Forecasts (QPFs)

We use QPFs from North Atlantic basin forecasts to demonstrate advanced TC QPF verification 

approaches with the suite of MET tools described above. The model-based forecasts have been 

anonymized as this paper is meant to present the tools and demonstrate the type of useful 

information that can be garnered through the application of the tools, thus the specific model is 

not relevant. Precipitation forecasts of 120 hours (5 days) are taken from 6-hourly model 

initializations (00, 06, 12, 18 UTC), and QPF accumulations at various forecast lead times (e.g., 

12-h, 72-h) are compared to the QPE products.

d. Temporal aggregation of precipitation fields

QPE accumulations are aggregated to appropriate intervals (e.g., 6-h accumulated precipitation) 

using the MET PCP-Combine tool, while model-based accumulation intervals are computed 

directly from the model output by differencing the total precipitation accumulation field between 

specific lead times (e.g. 18-h minus 12-h). Additionally, QPE products and the model QPF are 

regridded to a common 0.25 degree grid based on the coarsest resolution dataset (CMORPH) 

using the MET Regrid-Data-Plane tool unless specifically noted before any comparisons are 

made.  

3. Tools

Here we provide an overview of MET and a more detailed description of the specific MET tools 

applied in this study and their underlying methods. The MET Users Guide contains comprehensive 

information regarding their use and configuration (Halley Gotway et al. 2021). 

a. MET overview

The MET community verification software package (Brown et al. 2021) was developed to serve 

both the research and operational NWP communities through a state-of-the-art verification 
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software that is modular and adaptable. MET is freely available and supported, providing both 

traditional and advanced verification metrics, including spatial verification approaches. The 

structure and modules that make up the components of MET are show in Figure 1. The grey 

boxes represent file input and output, the dark green ovals show the pre-processing and 

reformatting tools, the plotting utilities are shown in the light green ovals, the blue ovals are the 

statistical tools, and the yellow ovals are the aggregations and analysis tools. The components 

represented in the lower right section of Figure 1 are the TC-specific MET tools. The TC-Dland, 

TC-Pairs, and TC-Stat tools were the initial TC tools, introduced to replicate the functionality of 

the NHC verification system. Several additional TC-specific tools have been added to MET in 

subsequent releases, where the TC-specific tools are defined by the use of ATCF format input 

files. The TC tools described herein utilize capabilities developed to account for TC track 

specific considerations while employing other MET capabilities that require input from the 

gridded forecast fields inputs.   

Figure 1. Overview of the structure of the MET package (version 9.1). From Brown et al. (2021), 

reprinted with permission from American Meteorological Society. 

a. Shift data plane (SDP)
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The SDP tool shifts gridded forecast data to correct for forecast track errors as compared to an 

observed track. A forecast and observed track of any generic feature of interest could be used, 

but currently the SDP tool requires the ATCF file format for forecast and observed tracks. 

Typically, a user would identify a forecast track using some type of vortex tracker (e.g., Marchok 

2021), which is used to objectively analyze data to provide an estimate of the storm’s central 

position and track the storm for the duration of the forecast. The corresponding best track 

analysis (Section 2a), is used for the observations. The SDP tool compares predictions at each 

individual forecast valid time to the matching observation field and shifts the forecast field using 

the forecast-observed track difference, essentially following the approach used by Marchok et al. 

(2007). Figure 2 provides a schematic of a hypothetical forecast shift for three forecast times. 

Track shifting is useful when track dependent verification is desired through more traditional 

metrics such as the equitable threat score (ETS) or fractions skill score (FSS; Roberts 2008, 

Roberts and Lean 2008). Advanced spatial verification techniques such as MODE object-based 

verification (Davis et al. 2006) account for object displacements, as discussed in Section 3c. 

Figure 2. Schematic of forecast field shifting using forecast minus analyzed track errors at three 

forecast valid times. 

b. TC-Radius of Maximum Wind (TC-RMW)
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MET’s TC-radius of maximum wind (TC-RMW) tool regrids TC model data onto a moving 

range-azimuth grid centered on points along a user-provided storm track, again provided in 

ATCF format. The radial grid spacing may be set as a factor of the radius of maximum winds 

(RMW). Figure 3 shows an example storm with the range-azimuth grid in RMW. Transforming 

forecast and observed data into a common TC-relative coordinate system is useful for storm-

relative and process-oriented verification. Many features and processes of TCs are better 

understood through a physically based storm relative coordinate system (e.g., Marchok et al. 

2007; Yu et al. 2015; Cheung et al. 2018).  

Figure 3. Range-azimuth grid of an example tropical cyclone. The thick black line across the 

storm center indicates the extent of the radius of maximum winds (RMW) with mean sea level 

pressure (mb) using filled gray contours for storm context. 

c. Method for Object-based Diagnostic Evaluation (MODE)

MODE is an object-oriented spatial verification technique that is designed to recreate subjective 

human-based object-oriented forecast verification within a quantitative framework. The 

motivation behind MODE stems from the desire to move beyond traditional forecast verification 

metrics like probability of detection to assess the spatial information within a forecast in an 

intuitive manner, and to more appropriately examine errors in gridded forecast values that are 

impacted by spatial displacements (Davis et al. 2006; Bullock et al. 2016). MODE uses a very 

simple convolution-threshold process to identify objects where a user-defined circular 

convolution filter is applied to both gridded forecast and observation fields. Then a user-
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specified threshold is applied to both convolved fields and objects are identified in the 

thresholded convolved fields. The user-specified threshold may be different for forecast and 

observed fields to account for distributional shifts between the two fields. After thresholding, the 

raw field values are substituted at all grid cells greater than or equal to the threshold value. 

Object attributes (e.g., centroid location, intensity distribution) are computed from the restored 

field and can be compared between the matched forecast and observed objects (Davis et al. 2006; 

Bullock et al. 2016). 

A fuzzy logic approach is used to merge objects within a single forecast or observed grid, and to 

match objects between the forecast and observed grids. MODE uses a combination of object 

attribute interest values and weights. The object interest functions are defined per object attribute 

and can be a piecewise linear function or one of several available algebraic expressions in MODE. 

This function defines what values of an object attribute are considered interesting, and how 

interesting they are. Attribute weights define which object attributes are most important to the user 

for the matching process and can be any nonnegative value, as MODE normalizes the user weights 

during matching. Attributes with large weights are more important in the matching algorithm 

(Bullock et al. 2016). The combination of interest and weights defines the total interest assigned 

to a pair of objects, and a user-specified total interest threshold defines what forecast-observation 

object pairs are considered matches. 

Parameter 

name 

Parameter description Parameter range and 

description 

Convolution 

Radius 

This parameter defines the radius, and thus the 

size, of the circular convolution filter 

A nonnegative number 

of grid cells 

Convolution 

Threshold 

The threshold values applied to the convolved 

observed and forecast fields that define where the 

subsequent restored raw fields have valid data 

Any valid observation or 

forecast field value 

Interest 

function1

The function that defines object attribute interest 

magnitude across all possible attribute values 

Bounded by [0,1] for all 

object attribute values 

Weight1 A scalar value that determines the relative 

importance of object attributes 

Any nonnegative value 

Total Interest Minimum value for forecast-observation object Bounded [0,1] 
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pairs to be considered a match 

Table 1. Description of primary MODE parameters that influence object identification and 

merging within a forecast or observed field, and matching between forecasts and observations. 

From Bullock et al. (2016). 
1The interest functions and weights can be specified for all object attributes computed in MODE. 

For each object that MODE identifies in either the forecast or observed field, characteristics of 

the objects are computed including their area, centroid locations, intensity statistics, which in this 

case are based on the grid cell precipitation accumulations within the object, and the complexity 

of the object outline contour. For forecast-observation matched objects, ratios of these quantities 

are computed, as well as contingency table statistics based on the objects (Halley Gotway et al. 

2021). After MODE output is generated, the MODE-Analysis or other user developed processing 

tools can be used to aggregate the aforementioned statistics. The ratios of matched forecast-

observation object pairs measure multiplicative biases of those quantities when aggregated. We 

use a combination of additional processing of the MODE matched pairs and the MODE-Analysis 

tool to identify matched objects and compute forecast/observation ratios such that values larger 

than 1 indicate an over forecast and values smaller than 1 indicate an under forecast of a given 

metric. 

4. Application Examples

This section steps through several applications of the aforementioned tools. Workflow diagrams 

for the application examples are provided in the Appendix. 

a. Storm-relative verification

Storm relative QPF verification is useful for improving both model process representation and 

understanding model biases for estimating rainfall flooding due to landfalling TCs (Marchok et 

al. 2007; Cheung et al. 2018; Yu et al. 2020). Storm-relative verification can be performed 

within MET via a combination of regional masking capabilities using the Gen-Vx-Mask tool and 

any of the MET analysis tools such as the Grid-Stat or Series-Analysis tools. Furthermore, both 

unshifted and shifted gridded output using the Shift-Data-Plane tool can be ingested into any 

MET analysis tool. An example workflow diagram is provided in Figure A1. Figure 4 presents a 

schematic of storm-relative distance masks for both model and observations that can be used to 
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generate storm-relative verification statistics. The model (Fig 4a) is a 168-h forecast track for a 

single initialization and the corresponding observations (Fig 4b) for each forecast valid time. 

Figure 4. Schematic of storm-relative distance masks within MET. User-specified range intervals 

(100 km) shown in colors are computed relative to the storm center (black line with circle 

markers, 12-h interval between markers) using the Gen-Vx-Mask Tool for both the a) model and 

b) observations. Additional masking between the land (hatching colors over gray background)

and water (colors over white background) is highlighted here.

An example of total forecast accumulated precipitation at each gridpoint for one forecast 

initialization time of storm A is highlighted in Figure 5a. The combination of multiple 

observational products is also demonstrated through the use of CMORPH precipitation over 

oceanic pixels (Fig. 5b) and Stage IV precipitation over land pixels (Fig 5c). Distributions of 

total precipitation accumulations across forecast lead times relative to the forecast and observed 

tracks aggregated across model initialization times highlight overall model precipitation 

placement tendencies as compared to observations. Boxplots are generated for all precipitation 

datasets for each distance band using all grid points in each band (Fig 5d). Here the forecast has 

a tendency to underestimate the amount of precipitation over water, particularly within 200 km 

of the storm center as compared to CMORPH. However, when the storm is over land, the model 

generates much higher precipitation rates and larger total area of precipitation (roughly 7% 

larger, 20,597 versus 19,121 points, Fig. 5d) within 200 km of the storm center. Similar to Figure 

5, we aggregate all matched forecast and observation distributions of accumulated precipitation 

for each forecast initialization for storm A to generate Figure 6. For 37 forecast initializations, 

the same forecast trends are seen (Fig. 6). There is a large over estimation of precipitation 

accumulation and precipitation area (roughly 30% larger area in the model, 490,240 versus 
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383,063 points) within 200 km of the storm center over land, while over water the accumulation 

distributions and total areas are very similar (712,751 versus 787,839 points). Other traditional 

metrics such as contingency tables and skill scores can be computed using MET on the shifted 

grid files, and are extensively documented and discussed in the MET and METplus Users’ 

Guides (Halley Gotway et al. 2021; Win-Gildenmeister et al. 2021) and literature (e.g., Wilks 

2019). 

Figure 5. Example total forecast precipitation accumulation (mm) in color shading and distance 

from storm center at 50 km intervals for a single initialization of storm A for a) model, b) 

observed best track over water with CMORPH, c) observed best track over land with Stage IV, 

and d) summary boxplot of precipitation accumulation (mm). For each box, the bold line 

indicates the median, the mean of the distribution is depicted as an asterisk, and the bottom and 

top edges show the 25th and 75th percentiles, respectively. The whiskers extend to the most 

extreme data points not considered outliers. The number of non-zero precipitation grid cells is 

listed above each range bin. This is a model forecast including land and water with the 

corresponding CMORPH observations being masked to only include water pixels and Stage IV 

observations only land pixels. Note the first column in d) is for the full 0-400 km distance. 
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Figure 6. Boxplot of total forecast precipitation accumulation (mm) aggregated across 37 

forecast initialization times from storm A for a model over land and water and corresponding 

observations with CMORPH being masked to only include water pixels and Stage IV only land 

pixels. Note the first column is for the full 0-400 km distance. For each box, the bold line 

indicates the median, the mean of the distribution is depicted as an asterisk, and the bottom and 

top edges show the 25th and 75th percentiles, respectively. The whiskers extend to the most 

extreme data points not considered outliers. 

b. RMW-based verification

Moving beyond storm-relative verification on traditional cartesian coordinates into storm-

relative cylindrical coordinates scaled by the RMW can provide additional insights into model 

biases and process deficiencies. The MET TC-RMW tool can be used for these evaluations, as 

shown in Figure A2. Figure 7a shows a composite of 6-hourly precipitation accumulation for 34 

12-h forecasts for storm B, with the corresponding CMORPH observations shown in Fig. 7b.

This approach to displaying the data highlights the differences between the forecasted and 

observed storm structure. The modeled storm in this case is more compact than the observed one, 

and has a larger precipitation gradient away from the storm center, with the most intense 

precipitation occurring within about two times the RMW. It is also more symmetric than 

observed with larger precipitation accumulations in the southern semicircle within five times the 

RMW. The observed storm has a smaller precipitation gradient with larger accumulations 
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outside two times the RMW in the northeast quadrant, and a lack of precipitation in the southern 

semicircle. There is also a notable time-mean precipitation maxima extending radially away from 

the storm center just to the north of due East (90 degrees) in the observed storm that is absent in 

the modeled storm. Given the known underestimation bias associated with CMORPH for higher 

precipitation rates, the differences between forecast and actual precipitation rates near the center 

of the storm may not be as drastic as shown in Fig 7, but the general spatial structure comparison 

should not be impacted by this bias.  

Figure 7. Mean six-hourly precipitation accumulation (mm) for 34 initializations of storm B at 

the 12-hour lead time for a) model and b) observations at the same valid times. Radii are 

proportional to the radius of maximum wind. 

The TC-RMW output can also be aggregated across time and space into distributions relative to 

the storm center similar to those shown in Section 4a. Because TC-RMW is currently lacking 

land-ocean masking capabilities, storm C, which does not make landfall, is used in Figure 8. 

However, similar trends are observed given the output is from the sample model and compared 

to the same observation type (CMORPH). The model consistently produces larger-than-observed 

precipitation totals irrespective of distance from the storm center, with a more pronounced bias 

near the center, which may be an artifact of CMORPH’s known underestimation bias for heavy 

precipitation. Care must be taken when aggregating across multiple initializations to take into 

account for factors like TC developmental stage, based on the user’s evaluation goals. 
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Figure 8. Boxplot of six-hourly precipitation accumulation (mm) aggregated across 47 forecast 

initialization times from storm C for the 12-hour lead time forecasts. For each box, the bold line indicates 

the median and the bottom and top edges show the 25th and 75th percentiles, respectively. The whiskers 

extend to the most extreme data points not considered outliers. 

c. Object-based verification

As discussed in Section 3, the MODE object-based verification approach can be used to identify 

individual objects or object groups in both the forecast and observation fields, and then identify 

matched objects or object groups that can be compared between the forecast and observations. A 

workflow diagram demonstrating the example below for running MODE is provided in Figure 

A3. An example of a 6-hourly accumulated precipitation forecast object group and observed 

precipitation object group for landfalling storm A is shown in Figure 9. In this case, we use 

masking capabilities within MET to focus on areas with valid Stage IV data. When using masks, 

only pixels within the valid masking region will be considered, thus the object will be split or not 

matched if the forecast or observation object falls entirely outside the mask. Note that the size 

and location of the objects depends on the threshold used to define the objects. The Shift-Data-

Plane tool was applied to the forecast data to correct for TC track errors. Shifting the tracks 

before running MODE may be useful to assure that model and observed TC features are properly 

matched, rather than TC features matching to non-TC features in the cases with large track 

errors. We see a group of forecasted objects highlighting the rain shield of a weakening TC, with 

the primary object being larger than the observed rain shield object. 
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Figure 9. An example of MODE accumulated precipitation forecast objects for storm A, 

identified as one object cluster in red with observation objects overlaid using blue outlines. 

Area, complexity, and intensity ratio distributions for 6-hourly precipitation forecasts at 12- and 

72-hour forecast lead times are shown in Figure 10. Here we see that the model has a tendency to

have larger-than-observed objects both over land and water, higher complexity over land, with 

larger biases over land than over water. The intensity bias increases over land with lead time in 

the two storms that make landfall. The combination of larger and more intense objects implies 

that this model overpredicts total rainfall over land, and possibly would overpredict inland 

freshwater flooding impacts, although inland flooding is controlled by additional processes 

within the landscape.  
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Figure 10. Aggregated MODE object statistics for all 6-hourly precipitation accumulations at 12- 

and 72-hour forecast lead times for the three example storms segregated by land (b,d) and water 

(a,c,e) masks. a-b) show storm A, c-d) show storm B, and e) shows storm C which never 

interacted with land. The x-axis abbreviations are defined as the first letter indicates the object 

statistic, A=area ratio, C=complexity ratio, and I=Intensity ratio, while F12 and F72 indicates the 

forecast lead time in hours. All ratios are forecast/observation. 

Finally, object composites (using the MODE computed object centroids as the reference point) 

are useful to identify spatial patterns in model biases. Figure 11 displays the composite object for 

the observation, model, and difference (model-observations) field for 6-hour accumulation at 12-
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hour forecast lead times from storm C. The model in this case has a much larger storm than was 

observed, roughly 1.75 times larger on average (Fig. 10e), and this is clearly seen in the 

composite object when comparing Figure 11a to 11b. The model also produces more total 

rainfall associated with the larger object, and also higher mean accumulation within the storm 

object (Fig. 11c). One caveat is that the CMORPH observations almost certainly underestimate 

precipitation accumulations in intense convection. Note that storm C only occurs over water, and 

therefore only CMORPH observation objects are included in the composite for Figure 11b. In the 

case of landfalling storms, a combined observation grid (e.g. CMORPH over water and Stage IV 

over land) would be necessary for identifying observation objects. 
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Figure 11. Composite of 6-hour accumulated precipitation (mm) MODE objects of storm C 

across 20 12-hour forecasts for a) model forecasts, b) CMORPH observations, and c) the model-

observations difference field. 

5. Summary and Discussion
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Moving beyond traditional point- or grid-based model QPF verification is useful for improving 

understanding of model biases that affect TC impacts such as inland freshwater flooding and also 

for building capabilities for process-based model diagnostics (Marchok et al. 2007; Villarini et 

al. 2011; Cheung et al. 2018; Chen et al. 2018). However, relatively few studies exist that have 

applied diagnostic and advanced verification methods to TC QPF verification. The MET 

software now contains a set of generalized and TC-specific spatial verification tools that allow 

for meaningful TC QPF verification along the TC tracks. Storm-relative verification using 

observed track-shifted (or unshifted) model data in absolute distance (km) can be useful for 

identifying model biases in precipitation accumulation in relation to TC centers, which have 

implications, for example, for the interpretation and application of forecasts of landfalling TCs 

(Figs. 4-6). Moving towards RMW-based verification using TC-RMW adds additional storm 

relative capabilities of regridding QPF and QPE into polar coordinates (Figs. 7-8). This approach 

is a process-based model diagnostic and verification technique that is a powerful tool to reveal 

feedbacks between forecast tracks, intensity and precipitation distributions (e.g. Yu et al. 2015; 

Cheung et al. 2018). Object-based verification including complex land masking capabilities 

provides even more nuanced verification capabilities. Precipitation objects of interest, either the 

central core of TCs, or extended areas of rainfall after landfall, can be identified, matched to 

observations and quickly aggregated to build meaningful spatial and summary verification 

statistics (Figs. 9-11). Finally, future work could explore the detailed differences between 

traditional and advanced spatial methods specific to TCs similar to what has been done for other 

precipitation features (Davis et al. 2006; Wolff et al. 2014). 

Within this analysis, a few points deserve more detailed attention. First, gridded observations of 

precipitation are inherently highly uncertain and often contain complex bias structures as noted 

here. Even in situ precipitation observations have uncertainties and issues with point-to-grid 

representativeness. Thus, future work should include examination of multiple observational 

products (e.g. IMERG/Global Satellite Mapping of Precipitation (GSMaP), Multi-Radar/Multi-

Sensor System (MRMS), Climatology-Calibrated Precipitation Analysis (CCPA)) in an effort to 

understand and potentially constrain observation uncertainty and interpret model performance 

statistics. Second, MODE is highly configurable with several tunable parameters that control 

object identification and matching (Table 1). In this work we tested many different convolution 
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thresholds and convolution radii and chose an optimal combination for this specific model and 

observation set that would identify similar objects in the model output and both CMORPH and 

Stage IV observations through visual inspection of MODE summary graphics. For any given 

model and observation dataset, and application, the optimal convolution threshold and radii will 

likely vary. Additionally, the matching scheme options may also be modified to influence how 

objects are grouped within model or observation fields, and how they are matched between the 

model and observations. Therefore, we strongly recommend testing a variety of MODE 

configurations and visually examining the output for expected behavior for a specific 

application. This requires a strong understanding of the types of verification questions the user is 

trying to answer before undertaking an in-depth verification effort. Finally, an expansion of the 

ability to use RMW units within other MET tools, such as MODE and other gridded data based 

analysis tools, will be considered for future MET releases to enhance the process-diagnostic 

utility of the toolkit. 
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Here we present workflow diagrams for the three general examples of TC QPF verification using 

MET tools to aid interested users. Figures A1-A3 correspond to the discussion in sections 4a-c, 

respectively. 

Figure A1. Workflow diagram example for creating a storm-relative distance verification using 

Series Analysis. Shift Data Plane needs to be run for the observations and forecast individually. 

The diagram components follow Figure 2 in Brown et al. (2021). 

Figure A2. Workflow diagram example for creating a TC-RMW output file for model and 

observed fields. Note this requires TC-RMW to be run twice, once for the forecast and once for 

the observations. Diagram components follow Figure 2 in Brown et al. (2021). 
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Figure A3. Workflow diagram for example for performing MODE analysis. Shift Data Plane 

needs to be run for the observations and forecast individually. Diagram components follow 

Figure 2 in Brown et al. (2021). 
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